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Exact theory of fibre fragmentation in a 
single-filament composite 

W. A. CURTIN 
BP Research, 4440 Warrensville Center Road, Cleveland, OH 44128, USA 

An exact theory is developed to describe the evolution of fibre fragmentation in a single-filament 
composite test as a function of the underlying fibre statistical strength and fibre/matrix interfacial 
shear stress, -c. The fragment distribution is a complicated function of fibre strength and -c because 
the stress around breaks which do occur recovers to the applied value, or, over a length 8(or) 
determined by ~. Therefore, no other breaks can occur within 8 (or) of an existing break. To account 
for this effect, the fibre fragment distribution is decomposed into two parts; fragments formed by 
breaks separated by more than 8(or) at stress (y, and fragments smaller than 8(~) which were 
formed at some prior stress ~' < cy when a smaller 8(or') < 8(or) prevailed. The distribution of 
fragments larger than 8 (or) is identical to that of a fibre with a unique non-statistical strength cr 
and is known exactly. The distribution of fragments smaller than 8(or) can then be determined from 
the distribution of the longer fragments. Predictions of'the theory are compared to simulations of 
fibre fragmentation for several common models of stress recovery around fibre breaks with 
excellent agreement obtained. The present theory can be utilized to thus derive both the in situ 
fibre strength at short gauge lengths -~ 8 and the r from experimentally obtained fragment 
distributions, and an unambiguous inversion procedure is briefly discussed. The application of the 
theory to other multiple-cracking phenomena in composites is also discussed. 

1. I n t r o d u c t i o n  
Composite materials composed of an epoxy resin 
matrix reinforced with high-strength carbon fibres are 
finding increasing applications due to their high spe- 
cific strength and modulus. The key factors underlying 
the performance of these materials are the shear stress 
across the fibre/matrix interface and the in situ tensile 
strength of the fibres. The shear stress determines how 
an applied load is transferred to the strong load- 
bearing fibres while the fibre strength determines the 
ultimate load-bearing capacity of the composite. The 
fibre strength must be described statistically, however, 
because the strength is controlled by the statistical 
distribution of defects along the length of the fibre. 
The strength of a given length fibre is thus not a single 
value, but varies from fibre to fibre. In addition, the 
average fibre strength depends on the length tested: 
longer fibres are more likely to have more detrimental, 
strength-limiting defects and so are weaker, on aver- 
age, than nominally identical shorter fibres. For fibre- 
reinforced materials, it is important to know the in situ 

strength distribution at lengths of less than 1 mm. This 
length fibre cannot be tested directly and hence longer 
(10-100 mm) weaker fibres are usually tested ex situ. 

The statistical strength at the much smaller gauge 
length of interest is then obtained by extrapolating 
from the results of tests on fibres one or two orders 
of magnitude larger, assuming a Weibull scaling of 
strength with gauge length (i.e. probability of fibre 
failure at stress cy and gauge length L of 
Pf  --- 1 -- exp( - L(cr/C~o)p/Lo) where o% and L o are 
a reference length and gauge length, respectively, and 

P is the "Weibull modulus" describing the variability 
of strength about the mean). The reliability of such 
a procedure is unknown. In addition, the statistical 
strength of a fibre may change upon processing, and 
so the Weibull parameters determined ex situ by ten- 
sile testing may be irrelevant for describing fibre per- 
formance in situ. A case where such extrapolation has 
been shown to be erroneous has been provided by 
Gulino and Phoenix [1]. Taking fibres tested at gauge 
length 20 mm with ex situ mean strength of 5 GPa and 
Weibull modulus of 9 = 5.6, they measured the num- 
ber of breaks versus strain in situ, as shown in Fig. la, 
and found that the Weibull scaling of the ex situ tests 
extrapolated to the 0.1 mm length overestimated the 
mean strength by up to 50%, as is evident in Fig. lb. 
Fitting the data of Fig. la to their approximate theory, 
Gulino and Phoenix further estimated the Weibull 
moduli of the two tested fibres to be P = 5.0 and 7.8, 
respectively, the latter deviating significantly from the 
ex situ value of t9 = 5.6. Clearly, ex situ failure data are 
not always relevant to the behaviour of fibres within 
the composite. The fibre/matrix interfacial prop- 
erties are often independently determined by pull-out 
experiments. 

In contrast to the standard experiments, the single- 
filament composite (s.f.c.) test yields information on 
the in situ statistical fibre strengths at small gauge 
lengths and on the fibre/matrix interracial properties 
simultaneously [-2, 3J. The s.f.c, sample consists of 
a single fibre set into a dog-bone shape matrix mater- 
ial having a large failure strain. Subjecting the s.f.c. 
sample to a tensile test, a progression of breaks in the 
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Figure I (a) Number of breaks versus strain measured in s.f.c, tests on two fibres. ( ) Predicted behaviour using ex situ strength data on 
20 mm fibres (mean strength 6. = 5.6 GPa, Weibull modulus 9 = 5.6). ( - - - )  Fits to theory of Gulino and Phoenix (1), fitting parameters (�9 
6. = 7.6 GPa, 9 = 5.0 and (~)  6 = 8.8 GPa, 9 = 7.8. (b) Mean strength versus gauge length. ( ) Extrapolation of ex situ data at 20 ram; 
(�9 ~ ) 6" from fits to (la). Note the overestimate of 6- at small gauge lengths obtained by extrapolation. 
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Figure 2 Schematic illustration of a single-filament composite test. 
The stress profiles along the fibre axis as a function of applied stress 
are shown. The weakest 12 defects at strengths an = n 1Is o l ,  ran- 
domly located along the fibre are marked explicitly. Breaks occur at 
these defect sites and the stress recovers linearly from zero at the 
break to the applied stress, a, over length 8(a). If defect n is closer 
than 8(a,) to a weaker defect n' < n, defect n falls within the stress 
recovery region of the break at n' and never breaks, as for n = 5, 7, 8, 
11, t2 ~ oo. The fragment lengths are the distances between breaks; 
increasing stress creates more and shorter fragments. 

fibre are  observed  (see Fig. 2). The: fibre sustains  mul-  
t iple b reaks  because  the mat r ix  holds  the compos i t e  
together .  W i t h  increas ing tensile stress, the first b reak  
occurs  at  the weakes t  po in t  a long  the fibre. The  tensile 
stress in the fibre recovers  f rom zero at  the fibre b reak  
to the app l ied  value over  a length of 6 which depends  

on both  the appl ied  stress and  the shear stress, t, t rans-  
ferred across  the f ib re /mat r ix  interface. Increas ing  the 
stress fur ther  increases the length 6 and  also in t ro-  
duces add i t iona l  b reaks  at  weak poin ts  a long the fibre. 
Because the stress within a recovery length 5 is a lways  
be low the app l ied  stress, as we will show below, sub- 
sequent  nea rby  breaks  are  a lways separa ted  by at  least  
a d is tance  5. 

Eventual ly ,  at  a sufficiently large stress, the frag- 
m e n t a t i o n  process  ceases because  each po in t  a long  the 
fibre is within the recovery length of some b reak  and 
therefore  no more  breaks  can occur. The  raw da ta  
f rom the s.f.c, test thus consist  of a record  of the 

loca t ion  of each b reak  and the stress at  which that  
failure occurred.  The  d a t a  are  usual ly  reformula ted ,  at 
var ious  stress or  s t ra in  increments ,  in to  a fibre frag- 
men t  d is t r ibut ion ,  where a f ragment  is the region of 
in tac t  fibre between two ne ighbour ing  breaks.  An- 
o ther  s impler  re formula t ion  of the da ta  is in to  a record  
of how m a n y  to ta l  b reaks  have occurred  as a funct ion 
of stress or  s t ra in  as in Fig. la .  I t  is clear from this 
descr ip t ion  of the s.f.c, test  tha t  the d a t a  conta in  
a weal th  of in fo rmat ion  on the in s i tu  fibre s t rength  at  
small  gauge lengths (of o rder  5) and  on the interracial  
shear  strength,  t. However ,  because  the recovery 
length, 5, changes with stress and  because  new breaks  
canno t  occur  close to p r io r  breaks ,  the effects of the 
under ly ing  fibre s t rength and  interracial  shear  
s t rength  are no t  easily separated.  The  p rob lem to da te  
has thus been one of ext rac t ing  these quant i t ies  out  of 
the s.f.c, test data ,  because  no comple te  theory  of the 
f r agmen ta t ion  process  exists when the fibre s t rength is 
s tat is t ical ly dis t r ibuted.  

F o r  unique s t rength  fibres, the f ragment  d is t r ibu-  
t ion can be der ived exactly,  however  [4]. By "unique 
s t rength fibre" we mean  that  the s t rength d is t r ibu-  
t ion is a p p r o a c h i n g  a del ta  funct ion (the "Weibu l l  
modu lus"  is near ly  infinite) and  hence the s t rengths  of 
the weakes t  and  s t ronges t  defects become identical .  
Nonetheless ,  the defects can still be o rdered  from 
weakes t  to s t ronges t  so tha t  the b reaks  will occur  in 
a well defined order.  In  this case, all the da ta  in the 
s.f.c, test are genera ted  at  the unique strength,  ao ,  and  
there is a unique  recovery length, 6o --- 5(a0)  tha t  does 
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not change during the test. Thus, at the end of the s.f.c. 
test all the fibre fragments must be between the lengths 
8o and 28o/The upper limit of 26o arises because if 
a fragment of length greater than 25o exists, the region 
near the centre still feels the applied stress and will 
break, leading ultimately to at least two smaller frag- 
ments between lengths 8o and 25o [5]. The length 26o 
is precisely the "critical length", lc, discussed by Kelly 
and Tyson. The fragment distribution at  completion is 
not uniform between 5o and 28o, however, and the 
mean fragment length ff is 2/8o = 1.337 (see also [6]). 
So, if the fibre strength is uniform then the desired 
mean stength, ~o, and recovery length, 80, could be 
obtained directly. Under the further assumption that 
the matrix is perfectly plastic with a shear strength ~, 
the value of ~ can then be obtained from the relation 

cyod cyod 
- - ( l )  

480 21c 

where d is the fibre diameter. However, the true 5(~) 
relationship cannot be determined from the experi- 
ment. In addition, the evolution of the fragment distri- 
bution with fragment number does not provide any 
additional information in this case. 

When the fibre strength distribution is not unique 
(i.e. for real fibres), the interpretation of the s.f.c, test is 
much more difficult. The distribution in strengths im- 
plies a changing recovery length 5(~) as the test pro- 
ceeds. At completion of the test at stress (Ymax, there is 
still a maximum possible fragment length 28(clm,x). 
However, the minimum fragment length is always 
smaller than 8(ore,x) because earlier in the test, at 
stress cy < c~ . . . .  there is some chance that two breaks 
can occur as close as 5(c~) < 8(ore,x). Henstenburg and 
Phoenix [3] have performed Monte Carlo simulations 
of the fragmentation process for particular 6(~) rela- 
tions and have formulated an empirical relation be- 
tween the final mean fragment length and the Weibull 
modulus governing the fibre strength distribution. 
Fraser et  at. [7] have also performed simulation stud- 
ies of the fragmentation process and Drzal et al. [8, 9] 
and Own et al. [10] have attempted to account for the 
statistical aspects of this problem by fitting fragment 
distributions to Weibull and log normal forms. How- 
ever, no progress has been made in predicting the 
fragment distributions analytically, despite the fact 
that the full evolution of the fragment distribution 
with increasing stress provides all the information 
needed to deconvolute the strength distribution and 
the 8(c~) relationship from experimental data. 

In this paper, we develop an exact theory of the full 
evolution of the fragment distribution. The crux of the 
theory is based on viewing the fibre fragments in two 
parts: (i) those fragments formed by breaks separated 
by more than 8(c~) at the current stress level cy, and 
(ii) those fragments smaller than 8 which were formed 
at an earlier stress level c~'< c~ when a shorter 
5(cy') < 8(c~) prevailed. The distribution of fragment 
lengths in part (i) (all fragments larger than 8(cy)) is the 

same as that for a fibre with a unique strength, cy, 
and is known exactly. The distribution of lengths in 
part (ii) (all fragments shorter than 8(or)) can be monit- 
ored exactly using certain aspects of the distribution 
of lengths in part (i). We subsequently use this theory 
to predict the fragment distribution for tests on 
fibers with distributed strengths and our results com- 
pare very well with the computer simulation results of 
Henstenburg and Phoenix [3] for a range of 8(c~) 
relations. The remainder of this paper is organized as 
follows. In Section 2 we analyse the fibre fragmenta- 
tion process and show it can be formulated as a set of 
differential equations involving only the fragment dis- 
tribution of a unique-strength fibre, which is known. 
In Section 3, the theory of Section 2 is shown to 
predict fragment distributions for varying fibre 
Weibull moduli and stress-recovery rules which are in 
excellent agreement with the simulation studies of 
Henstenberg and Phoenix. In Section 4 we discuss 
other applications of the same theory and summarize 
our main findings. Appendix 1 discusses some subtle- 
ties which can arise in properly defining the exclusiorf 
length 5(cy) in the presence of elastic shear stresses. 
Appendix 2 discusses other restrictions on the form of 
a spatially dependent shear stress, ~(x), for proper 
application of the theory. Appendix 3 contains a dis- 
cussion of the uniform-strength fragment distribution 
and Appendix 4 discusses some mathematical and 
computational aspects of this problem. 

2, T h e o r y  o f  f r a g m e n t  d i s t r i b u t i o n  
Before proceeding, it is useful to discuss first the 
nature of the stress recovery length, 8, and, moreover, 
the role 8 plays in precluding the occurence of close 
fibre failure locations (i.e. small fragments). At a fibre 
break, the axial tensile stress in the fibre is precisely 
zero and the matrix carries the load. As one moves 
away from the break position along the fibre, however, 
the axial stress in the fibre begins to increase due to 
stress transferred from the matrix through the inter- 
face. Mechanical equilibrium considerations show 
that the average axial stress (y(x) at a distance x from 
the break is related to the (possibly spatially varying) 
shear stress r(x) at the interface by the relation 

4fo ~(x) = ) r(x ')dx'  (2) 

where d is the fibre diameter (see [11] for further 
discussions). The recovery length, 8, is the distance 
at which c~(x) has reached the "applied" fibre axial 
stress, (Yap p * 

4;2 ~(8) = ~ "r 

= O,pp, (3) 

and so 8 depends on the form of'c(x) and on Cyapp. In 
our discussion here, we take z(x)  to be independent of 

* One problem we have not addressed here is how to determine the applied axial fibre stress. The composite strain and fibre strain are often 
not the same, making identification of the actual fibre stress a potential difficulty in practice. The present theory assumes this "applied" fibre 

stress is known during the test. 
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Oap p and 8; we address these issues further in Appendi- 
ces 1 and 2. Then, the stress o (x)  within the recovery 
length x < 8 is independent of Oapp; it is only the 
length of recovery 8 which changes with Oapp. Fur- 
thermore, because x(x) is non-negative, the stress with- 
in the recovery region x < 8 is always less than o~pp 

o(x) < O,pp x < 6 (4) 

and does not changes as O,pp, and hence 8, is in- 
creased. 

The consequences of this are as follows, and are 
schematically shown in Fig. 2 assuming for demon- 
stration purposes that z is a constant. First, if a break 
at x = 0 occurs at stress o*, then the stress in the 
recovery region x < 8* is forevermore below o*. Be- 
cause no points along x < 8* failed at the prior ap- 
plied stresses o < o*, no failures can occur in x < 8* 
at any future applied stress. For  even if o > o*, the 
stresses in x < 8* remain below o*  and no failure can 
occur. Second, consider a point x > 8*. As the applied 
stress increases, the stress at x increases and 8 in- 
creases beyond 8*. If 8 = x is reached at a stress lower 
than the failure stress of point x, with no intervening 
failures, then the point x enters the stress recovery 
region of the break at x = 0 and can never attain the 
stress required to fail (as is the case for the point at os  
in Fig. 2, which falls within the recovery region of 
point o l  at a stress below os). Thus, any region 
of unbroken fibre within the stress recovery length of 
some break cannot fail. Failures only occur at points 
which have not yet been subsumed by the stress 
recovery length 8 around the existing breaks. The 
stress-dependent recovery length, 8, thus creates an 
exclusion region about  each fibre break which pre- 
cludes the occurrence of any further fibre failures. This 
conclusion is independent of the detailed nature of 
z(x) (see Appendices 1 and 2, however). 

Overlapping of stress-recovery regions can occur 
if the failure stress of point x, o ~, is attained before 
6 = x. Then, the point x fails and forms a stress recov- 
ery region or exclusion zone of length 8(oX). The stress 
recovery regions around x and 0 may overlap at o x, 
i.e. x < 28(o~), to form a fibre fragment which will 
remain unaltered for the remainder of the s.f.c, test (in 
Fig. 2, the fragment between points o2 and o3 formed 
at o3, for example). Or, the stress recovery regions 
may overlap at some higher stress o > cy x satisfying 
x = 28(o) if no intervening failures occur (no case 
shown in Fig. 2). Or, finally, additional failures be- 
tween points 0 and x may occur at higher stresses, 
leading to additional fibre fragments (as shown in 
Fig. 2 by the break at point o9 which occurs between 
ol  and o2). In any case, it is important  to note that 
once any two stress recovery regions (exclusion zones) 
do overlap, the resulting fragment remains unchanged 
for the remainder of the s.f.c, test. 

With the above understanding of the role of 8 as an 
exclusion zone, we can now describe a procedure to 
calculate the fragment distribution as a function of 
stress. Imagine the s.f.c, test on a fibre of length LT to 
have proceeded up to stress o, with a corresponding 
recovery length 8(cy) at this point in the test, and that 
there are a total of NT fragments ( N T -  1 breaks). 
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Now remove from consideration the N R fragments of 
length x < 8(o) which occupy a combined length L~ 
of the fibre and store them in a distribution P~(x) (the 
subscript R reminds us that this is the distribution of 
the removed fragments). Because these fragments are 
shorter than 28 (c~) they will remain unchan9ed during 
the rest of the s.f.c, test. The remaining NT -- NR -- 1 
breaks are distributed along an effective fibre length 
L T -  LR.  Each break has a recovery length 8(o) 
around it and by construction, no two breaks are 
closer than 8(o). Therefore, the fibre fragment distribu- 
tion for this remaining portion of fibre, of" length 
L T -  LR, is identical to the fragment distribution of 
a fibre of unique strength o, length LT -- LR, and num- 
ber of breaks NT -- NR, corresponding to a dimension- 
less break density 

N T - -  N R 
8 = n5 (5) 

LT -- LR 

Let P(x; n, 8) denote this unique strength distribution. 
P(x; n, fi) Ax is the fraction of fragments of length 
between x, x + Ax at recovery length 8 and break 
density n8 and is known exactly, as discussed in Ap- 
pendix 3. The fragment distribution of the entire fibre 
at this stress is the sum of the removed distribution 
PR(X), which describes all the fragments of length 
x < 8, and P(x; n, 8), which describes all the fragments 
of length x > 8. 

At this point, we have just conceptually divided the 
fragment distribution into two parts, PR(X) for x < 8 
and P(x; n, 8) for x > 8. We know the unique-strength 
distribution P(x; n, 8) so what is required is PR(X) and 
the fragment density, n, in the remaining portion of the 
fibre at each stress level during the test. We thus 
examine how the distribution PR(x) for x < 8 and 
density n = N T - N R / L  y - LR, evolve with increasing 
stress. To do so, we next increase the applied stress by 
a small increment, Ao, and hence increase the recov- 
ery length by AS, and analyse the changes to PR(X) and 
n. Now those fragments previously removed from con- 
sideration at stress o remain unchanged at stress 
o + Ao, of course. But, at the new length 6 + AS, 
those fragments between 8 and 8 + A8 in length are 
now smaller than 8 + A8 and must also be removed 
from consideration. The fraction of fragments in this 
length range is P(x = 8; n, 8)A8 and so the total 
number  of such fragments is 

ANR = (NT -- NR)P(8; n, 8)A8 (6) 

and their total length is 

ALR = ANR6. (7) 

The above ANR fragments, all of length between 6 and 
6 + A6, must be added to the removed distribution 
PR(X). The change in PR(X) is thus 

APR(x) = ANR 8 < x < 8 + A8 (8) 

= 0 all other x 

These AN~ fragments are the only contribution to 
PR(X) at lengths 8 < x < 8 + AS. From Equations 
6 and 8 we see that the evolution of PR(X) is deter- 
mined solely by the known function P(& n, 8) evalu- 
ated at length 8 and density n. 



Returning to the remaining, unremoved, portion of 
the fibre, we now follow the evolution of the break 
density n. The length of this portion of fibre at stress 

+ Ar is n o w  LT - -  LR - -  A L R  because the length A L  R 

has also been removed. The number of breaks in this 
portion of fibre is NT - NR  minus ANa but also plus the 
number AN A of new breakable defects encountered 
between stresses r and ~ + Act. To determine ANA, 
we note that because only regions of fibre a distance 
5 or more away from a break can fail, and because 
each fragment is bounded by a break on each side, 
only fragments of length x > 25(~r) can incorporate 
another break. And, such a break can only occur in 
the available length x-2& Therefore, the number of 
breaks ANA added to the remaining fibre is 

A N A  = g(cy, L * ) A c ~  (9) 

where ~t(cy, L) Acy is the number of defects of strength 
between cy and cy + A~ in a length L of fibre, and L* is 
the total length of remaining fibre able to incorporate 
a break 

L *  = ( N  T -  N R - A N R )  ('/~ 
,) 25 

dx(x  - 25) P(x; n, 5). 

(lO) 

The f u n c t i o n -  p(cr, L) characterizes the statistical 
strength of the fibre and is often approximated as 
a Weibull distribution. In total, at stress ~ + Act, the 
remaining fibre length is 

L = L T  - -  LR - -  A L R ,  ( l la)  

the remaining number of breaks, N, is 

N = N T - - N  R - -  A N  R + A N  A (llb) 

and the break density is simply 

n = N I L  (12) 

The fragment distribution for lengths x > 5 + A5 is 
then simply given by P(x; n, 5 + AS). The evolution of 
the total fragment distribution is thus completely and 
exactly described by the physical parameters ulti- 
mately to be derived from experiment, i.e. the 5(c~) 
relation and the fibre strength distribution g(c~, L), 
and which serve as input into the theory, and by the 
unique-strength fragment distribution P(x; n, 5) which 
is known exactly. 

The process discussed conceptually above in Equa- 
tions 6-12 is more clearly and concisely described by 
a set of differential equations for the evolution of the 
length L and number of breaks N in the remaining 
fibre and of the removed distribution (unnormalized) 
PR which follow from the above by taking Act ~ dcr 
and A5 -~ d5 

dL d5 
dr7 NSP(5; n, 5) dcy (13a) 

dN d5 
dcy - NP(5; n, 5) ~ + kt(~, L*) (13b) 

L* = N f ~ dx(x  - 25) P(x; n, 5) (13c) 
26 

(14) n = N I L  

and 

dPR(X)  

d~ 

d5 
- NP(5; n, 5) ~ 5D(X -- 5) (15) 

where 5D() in the final equation denotes the Dirac 
delta-function. The initial conditions for Equations 13 
and 15 are L(ty = 0 )=  L~, N(cy = 0 )=  0 and PR(x; 

= 0 )=  0. These equations are easily solved up to 
applied stress, O'app, to yield the two parts PR(X), X < 5 
and P(x; n, 5), x > 5 of the full fragment distribution. 
These simple equations are the main result of the 
present work. 

Some qualitative features of the evolution of the 
fragment distribution are as follows. At low numbers 
of breaks (low stresses) the dimensionless break dens- 
ity, nS, is low and the probability of removing any 
breaks is roughly proportional to (nS) 2, which is negli- 
gible. The total fragment distribution is then very 
nearly P(x; n, 5). Likewise, for nearly unique strength, 
the number removed at any density is vanishingly 
small and again the total distribution is P(x; n, 5). At 
higher stresses and broader strength distributions the 
"removed" distribution, Ps(x), can, however, represent 
a large fraction of the total distribution; below we 
show that at completion of the test a fibre of Weibull 
modulus p - 3 has about 65% of its fragment distri- 
bution in PR while for P = 5 [10], about 59% (50%) of 
the distribution is in PR. Hence, this contribution is 
crucial in order accurate to follow the evolution of the 
fragment distribution over a wide range of P values. 

To reiterate, our formulation of the fragment distri- 
bution of distribution strength fibres is seen to reduce 
the entire problem to one of knowing only the unique- 
strength distribution P(x; n, 5), which has a tractable 
exact solution (see Appendix 1). Thus, given an experi- 
mental set of fragment distributions at known stresses, 
the desired fibre statistics g(cy, L) and interfacial 
quantities contained in the 5(0) relation can, in 
principle, be obtained by appropriate inversion 
procedures. 

3. Fragment distributions: Weibull 
fibre strength 

In this section we solve Equations 13-15 using results 
given in Appendix 3 for P(x; n, 5) and demonstrate the 
quantitative success of the theory. We specialize to 
the case where the fibre strength is of the Weibull 
form, which is usually assumed to hold for real com- 
posite systems, but the theory is by no means re- 
stricted to this special case. Also, our predictions for 
the fragment distribution can then be compared di- 
rectly to the simulation results of Henstenburg and 
Phoenix [3]. 

The Weibull form for the fibre strength distribution 
for a fibre of length L is 

L P 
~t(~, L) - (t~/Co) p-1 (16) 

Locro 

where Lo is the fibre gauge length appropriate to the 
scale parameter Go and P is the Weibull modulus [3]. 
Note that this form for p(o, L) assumes that defects in 
the fibre are spatially uncorrelated and thus that the 
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Figure 3 Weibull plots of the ( - - )  predicted and ( - - )  simulated final fragment distributions for linear stress recovery; In [- - ln(1 - F)], 
with F the cumulant of the fragment distribution, versus In (fragment length) for several values of Weibull modulus, 9, at fibre length 
LT/SR = 200. The fragment length is normalized to the reference length ~ (see text), Arrows denote longest fragment lengths contained in the 
"removed" distribution PR, which constitute a substantial fraction of the total distribution at moderate 9. 

probability of finding any type of defect scales linearly 
with fibre length. Insight into the scale parameters Lo 
and Go is gained by recognizing that Go is the applied 
stress required to cause exactly (on average) one fail- 
ure in a fiber of length Lo. 

3.1.  Linear  s t r e s s  r e c o v e r y  
Here we further ~specialize to the situation where the 
shear stress is assumed constant, z(x) = z, so that the 
recovery length is linear with stress, 6 = dG/4Z. It is 
convenient to introduce reference length and stress 
scale parameters to put all quantities in nondimen- 
sional form. As discussed in Appendix 4, the reference 
stress scale is chosen to be the fibre strength, G,, at the 
reference gauge length, 26, (with 6,  = dGR/4Z), which 
yields 

(2~ p'~i/(p+ i) 
GR = -dLo  Go)  (17) 

and is the same as that selected by Henstenburg and 
Phoenix [3]. 

Predictions for the final fibre fragment distribution 
for a range of P are shown in Fig. 3. The p values, and 
the fixed value of LT = 200, correspond precisely to 
cases studied by Henstenburg and Phoenix, and their 
results are also shown in Fig. 3. The predicted distribu- 
tions agree very well with the simulation results at all 
p. There are some deviations at the largest fragment 
lengths and for intermediate values of p, P -~ 10, but 
we suspect the theory lies within the error bars (not 
given in [3]) of the simulations, because at each P the 
simulation da ta  are the average of only five realiza- 
tions. Also, the variations in the simulation values of 
the final stress for P = 5 vary by _+ 10% from the 
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TABLE I Theory and simulation [3] results for mean number of 
fragments versus Weibull modulus, P, for linear recovery (nominal 
fibre length LT = 200) 

0 LT NT(sim) NT(theory) 

3 198.4 103 102.8 
5 198.5 113 111.5 

l0 199.1 124 123.7 
15 199.1 129 129.7 
oe 149 149 

(1000) 

mean value, for ten realizations, suggesting wide fluc- 
tuations at least near the end of the test. The predicted 
and simulated number  of fragments NT at the end of 
the test are shown in Table I and agree well for all p, 
noting that for the ten realizations at P = 5, NT varied 
between 109 and 119. The mean fragment length is 
shown in Fig. 4, and our results are within the error 
bars of the simulation results, the deviations being 
largest again in the intermediate range of Weibull 
modulus values, 10 < p < 20. Also shown in Fig. 3 are 
the points at which the distribution PR(X) ends and 
P(x; n, 6) begins; as noted earlier a considerable por- 
tion of the fragment distribution resides in PR(X). 
These results clearly show that the unique-strength 
distribution ( p = oe) is very inadequate for describing 
fragment distributions of real fibres, for which P -< 15 
is typical. 

The above comparison was confined to only the 
details of the final fragment distribution. The theory 
also predicts the full evolution toward that final distri- 
bution, and sample results for P = 5 are shown in 
Fig. 5; experimental/simulation results are not avail- 
able for comparison, unfortunately. Another mani- 
festation of the accuracy of our approach to the 



2.5 

g, 

8 

1.5 

p=oo 

p=oo 

1.0 I I I 
2 6 10 14 18 

Weibull m0dulus~ p 

Figure 4 Mean fragment lengths :~/6R as ( ) predicted and 
obtained by simulation versus Weibull modulus, P, for (O)  linear 
recovery and (C l) bilinear recovery (c%/o R = 0.7, ~f/~ = 0.3). 

LT/6R = 200. 

2.0 

1.0 

0.0 

"-: -1,0 . , a  
o 
CL.  

' -2.0 
-g 

-3.0 
5 

-4.0 

-5.0 

-6.0 
-0.5 

I I , [ / ~ i  I I ~ l i t  I I I I I I I l I I L l 

0.0 O.B 1.0 1.5 2.0 
Ln (fragment length) 

Figure 5 Weibull plot of predicted evolution of the fragment distri- 
butions with increasing stress, shown at various break fractions, for 
linear recovery and P = 5, LT/6R = 200. 

evolution~ of the distribution is in a comparison be- 
tween theory and simulation of the number of breaks 
as a function of stress. The dimensionless break den- 
sity 2NfiR/LT versus dimensionless stress Cr/CrR, is 
shown in Fig. 6 for two values p = 4 and p = 8. 
Agreement with the simulation data is again excellent 
over the entire stress range covered by the s.f.c, test. 
Also shown in Fig. 6 are the results of a simple theory 
of Gulino and Phoenix [1]. This theory is accurate at 
lower densities and has a simple analytical form, but 
fails at higher densities in a p-dependent manner. 
Considering the cumulative probability of finding 
a break as a function of stress normalizes the number 
of breaks, N, in the experiment and the theory by the 
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Figure 6 Dimensionless break density NLT/6R versus stress for 
P = 4, 8 as predicted by ( ) the present theory, ( - - - )  the theory 
of Gulino and Phoenix [1], and ((D) by simulation. 
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Figure 7 Weibull plot of number of breaks versus stress for linear 
recovery and a range of p values. The data are nearly linear up to at 
least f =  0.75, with slopes close to the actual P values. 

total number NT. Obtaining the cumulative probabil- 
ity after N breaks as f = ( N -  0.5)/NT, as done by 
Henstenburg and Phoenix [3], we find that (see Fig. 7) 
a Weibull plot of I n ( -  l n ( 1 - f ) ]  versus ln(~/c&) 
yields very nearly a straight line, and these predicted 
results are essentially in perfect agreement with the 
simulation results. Why the distribution of breaking 
stresses follows a Weibull form over such a wide range 
of stress (it should be Weibull at low stresses, of 
course) is not understood. But, the fact that the appar- 
ent Weibull modulus, ~, is close to the actual p should 
be of considerable value indevising a means to obtain 
p, C~R, 6R and 6(or) from experimental data. 

3.2. Bil inear s t ress  r e c o v e r y  
Henstenburg and Phoenix [3] have also considered 
the next level of complication in the 6(c~) relation by 
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allowing debonding starting at the fibre break with 
a frictional shear stress along the length of the debond. 
It is assumed that the usual linear stress recovery, 

= dcU4z,  with z perhaps interpreted as a yield stress, 
holds up to a critical length, ~b, and that for larger 
stresses a debonded region forms behind the yield 
region with constant frictional stress, zf. For  stresses 
o > cyb such that 5 > 5b, the stress recovery length is 
then determined by 

4 fi- b (3" ~--- (3" b -t- ~ dx "~e (17) 

where 6 -  gb is the debonded length. Solving for 
yields 

d 
= O b + ~ ( O - - O b )  O >_ Ob (18) 

This modification introduces two additional para- 
meters, Oh and the ratio zf/z, into the problem. We 
may still continue to use the scale factors OR and 8R 
to non-dimensionalize the problem, however, and so 
input to any calculation consists of p, Ob/OR, Zf/~ 
a n d  L T . 

In Fig. 8 we show our predicted final fragment 
distributions for various p values for the fixed values 
of Ob/CYR = 0.7, Zf/X = 0.3 and LT = 200. As pre- 
viously, these results compared well with the simula- 
tion data. The final mean fragment lengths, shown in 
Fig. 4, and the total number of breaks as exhibited in 
Tables II and III are also in agreement for a range of 
Oh/OR and Zr/X values. The cumulative number of 
breaks versus stress plotted in Weibull form is shown 
in Fig. 9 for 9 = 5, ~e/Z = 0.3 and a range of Ob/OR. 
The dependence is again nearly Weibull-like but there 
is systematic curvature to some of the results in Fig. 9. 
The apparent Weibull modulus 15(9) is slightly differ- 
ent from that obtained using the linear stress recovery 
model but is not very sensitive to the value of CYb/CYR. 
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Comparing the linear stress recovery to the bilinear 
stress recovery distributions, overall the same qual- 
itative dependence on p is obtained and the quantitat- 
ive differences reside mainly in differences in mean 
properties such as ~/6R. Because the underlying 6R are 
unknown in a real experiment, our results suggest that 
inverting experimental data to determine ~(~) is 
a subtle task. 

3.3. S u m m a r y  
The theory of Section 2 has been shown to agree well 
with all aspects of the available computer experiments. 



The full power of the theory is that, as opposed to the 
arduous task of performing many simulations, the 
fragment distributions for any (jo, Lo, 9, LT and 8((j) 
relation are essentially trivial to calculate with high 
accuracy. Therefore, the inverse problem of determin- 
ing the (jo, Lo, (or (JR and 8R) p and 8((j) from a given 
set of experimental data is, in principle, now far more 
easily and efficiently accomplished than previously. In 
the next section, we discuss some details of such a pro- 
cedure and examine the sensitivity of the fragment 
distribution to the 8((j) relation. 

4. Discussion 
With the ability to predict accurately all the details of 
the fragmentation process given p, t, (jo, Lo, vf/~ and 
(jb, we now briefly investigate the prospects for invert- 
ing experimental data to derive these quantities. As 
noted at the close of the previous section, a Weibull 
plot of the cumulative number of breaks f versus 
stress yields a good straight line of slope 15, which is 
close to the true Weibull modulus 9. On the other 
hand, this behaviour is not all that sensitive to the 
detailed 8((j) relation. To highlight this, Fig. 10 shows 
f versus stress for a particularly bilinear recovery 
(9 = 5, zf / t  = 0.3 and (Jb/GR = 0.7) as well as for 
several linear recovery cases (tf/z = 1.0, (Jb/(JR ---- 0.0, 
for various values of O near O ----- 5). Evidently, because 
these plots are quite similar, the number of breaks 
f versus stress is rather robust for obtaining approx- 
imate 9 values but is, therefore, not useful for obtain- 
ing 8((j) data. At least one additional distribution is 
needed to aid in interpreting the data. Here, we will 
select the final fragment length distribution, which 
appears to depend more sensitively on the 8((j) rela- 
tion, as the second distribution to fit. To see that 
f versus stress and the final fragment distribution are 
in some ways complementary, consider again Fig. 10. 

One might erroneously conclude that the f versus 
stress for (p = 5, t f / t  = 0.3, (jb/(jR = 0.7) was due to 
a linear recovery model with p _~ 5.50. However, com- 
paring the final fragment distribution for (p = 5, 
t f / t  = 0.3, (jb/(jR = 0.7) to that for linear recovery at 
various 9, as shown in Fig. 11, we find that the best fit 
linear recovery model corresponds to a 9 between 
2 and 3. Thus, the linear recovery model with a single 
p value cannot accurately fit both the number of 
fragments with stress and the final fragment distribu- 
tion obtained from the bilinear recovery distributions. 
This indicates that with these two distributions we 
have some sensitivity in determining p and the 8((j) 
relation, and suggests that they be used for deducing 
the general set of parameters p, "Of/"(7, (Jb/('YR, (JR and 8 R. 

With a firm understanding of the fragmentation 
process of single-fibre composites, it may now be feas- 
ible to examine and interpret the fibre breakage pat- 
terns in multi-fibre composites to gain some insight 
into the load transfer process. In principle, the know- 
ledge of in situ fibre statistics and stress-recovery 
lengths allows one to assess the correlations between 
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O Lr  NT(sim) NT(theory) 

3 197.7 71 69.1 
5 197.3 69 69.3 
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so 198.8 87 86.6 

-3J 

,,'//,%tL.p = = 6ss 

-4.0 0 = s"' .F'---o 

-1.0 -0.5 0.0 0.5 
Ln (stress) 

Figure 10 Weibull plot of fraction of breaks versus normalized 
stress for 9 = 5, zf/'c = 0.3, ~b/G R = 0.7 and for linear recovery with 
p = 5.0, 5.5 and 6.0. 

T A B L E  I I I  Theory and simulation [3] results for mean number  of fragments and mean fragment length versus Gb/(YR, zf/'~ (bilinear 
recovery) at 0 = 5, nominal  LT = 200 

gb / CrR t f / t  Lr N T (sim) NT (theory) )~/6R (sim) 2/8R (theory) 

0.5 0.3 196.8 59 57.8 3.336 3.413 
0.6 0.3 197.6 63 63.2 3.147 3.130 
0.7 0.3 197.3 69 69.3 2.868 2.855 
0.8 0.3 198.6 77 76.8 2.573 2.592 
0.9 0.3 198.2 83 84.3 2.377 2.355 
1.0 0.3 198.1 97 92.1 2.033 2.156 
0.7 0.3 197.3 69 69.3 2.868 2.855 
0.7 0.5 198.6 90 86.2 2.217 2.308 
0.7 0.7 198.3 100 98.0 1.983 2.025 
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close breaks in neighbouring fibres. Such correlations 
arise because the load previously carried by a now- 
broken fibre is transferred on to the nearby fibres, 
leading to a non-uniform stress distribution in the 
neighbours and thus a higher probability of failure of 
the neighbours in the vicinity of the first failure. It is 
precisely the build up of such local correlated failures 
which leads to the ultimate failure of the entire com- 
posite once a critical number of fibres have failed in 
roughly the same plane. By observing the occurrence 
of nearby fibre breaks, one can, knowing the in situ 

fibre strength statistics at small lengths, work back- 
wards to deduce how much load was transferred from 
one fibre on to another. Such information as obtained 
from actual experimental evaluation may prove in- 
valuable. 

The s.f.c, test is commonly applied to carbon 
fibre/epoxy matrix systems, but it may also be relevant 
for gaining information on metal-matrix composites 
(MMCs). Here, too, one has strong, stiff, brittle rein- 
forcements embedded in a soft ductile matrix and the 
ultimate composite strength is controlled by the frac- 
ture of the reinforcements. The shear stress, ~, is usu- 
ally assumed to be the plastic yield stress in shear, ~y, 
of the matrix and this assumption, as well as changes 
in the reinforcement strength induced by processing, 
could easily be studied using s.f.c, tests. Although the 
matrix is not optically transparent in an  MMC, the 
fibre fracture events can be monitored by acoustic 
emission (time-of-flight of acoustic pulses generated 
during fracture) as long as the fragment lengths are 
longer than the spatial resolution of this technique. 
The s.f.c, test thus holds the promise of yielding 
a wealth of much needed information on MMC 
materials. 
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Finally, the present theory is applicable to several 
other multiple-cracking problems which arise in com- 
posite materials. The first problem is that of the mul- 
tiple matrix cracking which occurs in ceramic matrix 
composites reinforced with stiff fibres but with a slid- 
ing interface. In this case, the matrix exhibits cracking 
and the fibres transfer load to the matrix over a length 
6 associated with the sliding resistance z. This problem 
is identical to the s.f.c, test here if one views the 
ceramic matrix as the multiple-cracking "fibre" and 
the reinforcing fibres as the elastic matrix medium 
containing this "fibre". The evolution of the matrix 
crack spacing with stress is then the same as that of the 
fragment distribution in the s.f.c. Hence, the present 
theory should allow for matrix cracking data to be 
inverted to obtain the interface and the failure 
statistics of the matrix material. The second problem 
is that of the multiple cracking of ceramic coatings on 
ductile substrates. This situation is the same as for an 
MMC except that the "fibre" is a thin film and the 
matrix exists only on one side of this film. Otherwise, 
the mechanics is largely identical and the present 
theory is useful for obtaining the coating/substrate 
shear strength and coating strength. Both of these 
problems have been studied using the unique-strength 
theory (p ~ oo) known previously, but the theory 
introduced here will allow for a better quantitative 
analysis of the fragmentation data. 

In summary, we have discussed how fragmentation 
data from a single-filament composite test contains 
information on both in situ fibre strength and fibre 
matrix interracial properties. To extract clearly such 
information from the data, we have developed an 
exact theory of the evolution of the fragment distribu- 
tion with applied stress. The crux of the theory 



involves continually removing (conceptually) the 
small fragments which cannot be further fragmented 
to leave only that portion of the fibre whose fragment 
distribution is exactly that of a unique-strength fibre 
with some appropriate break density. Because the 
fragment distribution of the unique-strength fibre 
problem is known exactly, the more general theory 
is also exact. The theory takes the form of a set of 
first-order differential equations describing the evolu- 
tion of the removed fragments and the remaining 
fragmented fibre and, although non-linear, these equa- 
tions are easily solved by iteration. We have demon- 
strated the success of the theory by showing the 
agreement between our predictions and "experi- 
mental" results obtained by computer simulations. 
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Appendix 1. Stress recovery including 
elastic shear stresses 

In the main text, we discussed the fragmentation phe- 
nomenon in the context of a shear stress ~(x) which is 
independent of the applied stress. This condition cer- 
tainly does not hold when only elastic stresses and 
strains are present in an elastic matrix with an elastic, 
well-bonded fibre. At low applied stresses, i.e. prior to 
any yielding or debonding, this is certainly the case 
and the shear stress is entirely elastic. And, even after 
yielding or debonding some of the stress recovery is 
still elastic in nature. In Appendix 1, we use the well 
known shear-lag analysis of Cox [11] to elucidate 
when elastic stresses are important and how to best 
account for them in our model. 

Consider an elastic fibre of length I well-bonded to 
an elastic matrix under strain ~o. The maximum stress 
which can be built up in the fibre is C~o = Ef ib re  gO. In 
the absence of any yielding or debonding at the inter- 
face, the stresses ~(x) at the interface and cy(x) in the 
fibre are, within a shear-lag analysis [11] 

sinh [(131/2)(1 - 2x/l)] 
r(x) = a(Yo (Ala) 

cosh (13//2) 

and 

cs(x) = Oo 
1 - c o s h [ ( 1 3 1 / 2 ) ( 1  - c~sh ~1/2) 2x/l)] } (Alb) 

where a and 13 are constants given by Cox as 

o~ = [ G m / 2 E f  l n ( R / r ) ]  1/2 (A2a) 

4 
13 = ~o~ (A2b) 

where Gm is the matrix shear modulus, d the fibre 
diameter, and r the fibre radius. The quantity R/r is 
related to the fibre fill fraction in Cox's treatment but 
R is better interpreted as the radial distance from the 
fibre axis at which the matrix strain is unaffected by 

the presence of the fibre 1-2]. For long fibres, B >> 1, 
c~(x) ~ ~o over most of the fibre length and x(x) -~ 0 
except near the fibre ends. z(x) is a maximum at the 
fibre ends. 

Clearly, ~(x) never fully attains the value Cyo for 
a finite length fibre, and thus the "recovery" length 
defined by Equation 3 is formally infinite. Moreover, 
as o0 is increased, the axial fibre stress is increased at 
all locations 0 < x < I in the fibre. Therefore, a stress 
exclusion zone where the stress remains at or below 
a constant value does not exist. This is evident in 
Fig. A1, which shows or(x) for three increasing values 
of applied stress. Supposing the break at x = 0 to have 
occurred at stress (Yl in Fig. A1, we see that at higher 
stresses ~ > cyl much of the fibre length also carries 
a load greater than eye. In particular, as (y increases, 
the region of fibre near the end with stress below ~, 
decreases steadily in length. Therefore, if only elastic 
stresses exist, the fibre fragmentation cannot be cor- 
rectly described by our theory. We are currently work- 
ing to establish a means for taking into account stress 
profiles such as those in Fig. Ala. Fortunately, many 
composite materials exhibit matrix yielding or inter- 
face debonding at stresses much lower than the typical 
fibre strengths. The stresses over which purely elastic 
behaviour prevails may then be small. In this case, 
few if any breaks will occur in the elastic regime and 
a linear approximation to the axial stress of 
c~(x) = 13~oX, 0 < x < 13-~ and c~(x) = (So, x > 13-1, 
which corresponds to a stress-independent exclusion 
length 8 = 13-1, may be a reasonable approximation 
to the true stress profile of Equation Alb, as shown in 
Fig. A1. Once yielding or debonding begins, a true 
exclusion zone can be better defined, as we now show. 

To investigate the influence of yielding/debonding 
imagine that as e0 (or Go) is increased r(x = 0) reaches 
a critical value ~f at which either (i) the interface fails in 
shear, or (ii) the matrix yields in shear. Then as cyo is 
increased further, a "debond" region forms at the fibre 
ends and propagates inward such that the shear stress 

(2;3 

(~2 

I 1 
9-I 2~-1 

Fibre oxis 

Figure A1 Axial stress profiles for purely elastic stresses. Note that 
as the applied stress increases, the stresses increase everywhere 
along the fibre length; hence no exclusion zone can rigorously be 
defined. An approximate exclusion zone of length !3-1 independent 
of stress (lighter line) may be useful at low stresses, however. 
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at the tip of the debond remains at rf. In the debond 
region, the shear stress is given by some value zi 
(assumed constant in this discussion). In case (i) above, 
which may be most relevant for epoxy resin/carbon- 
fibre composites, zi is the frictional shear stress behind 
the debond. In case (ii) above, which is also relevant 
for metal-matrix composites, q is the matrix yield 
stress Ty and "l~ i = "~y = '~f also. 

The stresses in the fibre in the presence of the 
debond may now be determined. For  an applied 
stress, Go, creating a debond of length db, the stresses 
behind the debond are 

~(x) = q x < db (A3a) 

4~i 
G(x) = ~ - x  x _< db (A3b) 

For x > du, the elastic stresses still exist and are the 
same as the stresses in a fibre of length l' = l - 2db 
under an "applied" stress G' = Go - 4db~i/d, because 
an axial stress of 4db~i/d is built up within the debond 
region. Thus, Equations Ala  and b hold with l '= 
l - 2db, G' = Go -- 4db~/d and a new "fibre end" at 
x = db so that with x' -- x -  d b. 

st/Go~ 4db '~ sinh [([~1'/2)(1- 2x'/l') 
"c(x) - 

x > du (A4a) 

G ( X )  = T ' l ~ i - { -  G O ~---T i 

x[1 - c~ 2x'/l') 

x > db ( A 4 b )  

The debond length, db, is determined by requiring 
"c(x + = db)=  "of, or using Equation A4a 

( 4du ,, (~f f )  
12f = (~ 13" 0 - -  ~--2;i) tanh (I' = I - 2db) 

(A5) 

showing that db is determined by rf, Go and ~, as 
expected. Equation A5 allows us to rewrite Equation 
A4a in the compact form 

sinh [([31'/2) (1 - 2x'/l')] 
7:(X) = "Of X__> d b 

sinh ([3/'/2) 

(16) 

which clearly exhibits the fixed value of zf at the 
debond tip. Finally, using equation'A5 in Equation 
A4b allows us to express the axial stress recovery as 

4"q 
cy(x) = ~ - x  x _< db (A6b) 

4db "Of 
G(x) - d z i + - -  

x [  c~ - e~ ( 1 -  2x'/l')] 

x > d b  (A6c) 

which is one main result of this appendix. 
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The axial stress given above is shown schematically 
in Fig. 12. The important features to notice are the 
following. First, the total elastic stress is limited to xf/~ 
because as the applied stress increases it is the debond 
length which grows, and the elastic recovery region is 
only translated along the fibre axis. If the typical fibre 
strengths are much larger than zf/~, then the stresses 
Go during the s.f.c, test are typically G o ~> Zf/~ and 
thus most of the stress is taken up by the debond 
region. This, along with the fact that zi --- ~f, indicates 
that most of the stress recovery length is taken up 
by db also, i.e. db ~> ~-1 where [3-1 is the length over 
which the elastic stress recovers exponentially. Sec- 
ond, the slope of G(x) at the debond tip is actually 
a constant, dG(x = d~)/dx = 4~cf/d, independent of 
both db and the applied stress, Go. 

For  this axial stress profile, a proper exclusion zone 
length, 8, can now be constructed. Recall that the 
important aspect of the exclusion zone is that within 
it, the stress never attains the value that it had before 
entering the exclusion zone. In this sense, all points 
within the exclusion zone have been "proof-tested" at 
a higher stress than they will experience during the 
remainder of the test; hence these points will not fail. 
We identify this length ~o at the applied stress Go, 
then, as the longest length 60 at which the stress at rio, 
G(So), will never exceed the current applied value 
Go, as the stress is increased further. At stress Go, 
corresponding to debond length d ~ we thus require ~o 
to satisfy 

4db ~ 
G(~o) _< Go = d zi + ~f/~ (A7) 

for all applied stress G > Go, or equivalently all de- 
bond lengths db>  d ~ Because within our theory the 
exclusion zone is associated with a single break, the 
length ~ cannot itself depend on the fragment length 1. 
Thus, we must neglect the effect of finite lengths l' in 
Equation A4b and take I' ~ oo so our approximate 

Approximate 
stress pmfil.e 

\ 

Sto 
4 ~  i db/df 

f - -  Debond zone "1 I 
0 % 

Fibre axis, x 

Figure A2 Axial stress profile including debonding/yielding and 
elastic stress recovery (bold line). Only a fixed fraction zf/~ of the 
applied stress c% is taken up by the elastic stress recovery. A rigor- 
ous exclusion zone 6o at stress c% can be defined as (see Appendix 1) 

The approximate stress recovery profile needed to apply the present 
theory is shown as the lighter line. 



stress at 80, cy(8), is 

4~ 
0"(80) = ~ -  80 80 < d b (A8a) 

4db e - ~(ao - a~)) 
r = ~ - T  i "[- Tf/0~ ( 1 -  

8o > db (A8b) 

at the applied stresses, o, corresponding to debond 
length db. Requiring Equation A7 to hold for all 
debonds, db > do (i.e. all stresses greater than Oo) is 
accomplished by taking the equality in Equation A7, 
o(80) = C~o, solving for 8o and minimizing with 
respect to the stress, or equivalently db. This yields an 
exclusion zone length 

8o = d ~ + ~[1 - ln(7;i/'cf) ] (A9) 

at stress cy o (debond length d~ The exclusion zone 
length differs from the debond length by a length on 
the order of [3-1. For smaller % the exclusion zone 
length is larger. In terms of the applied stress o0, the 
exclusion zone length may be expressed, after some 
algebra, as 

 ,od l[-,f (t)] 
4"Ci ~ [ _ ~ i  - -  1 + In . (AIO) 

In this form, 8o is similar to the linear stress recovery 
at constant zl but with a stress-indePendent correc- 
tion. For  the special case zi = zf (matrix yielding at the 
interface), the correction term is precisely zero and 
8o = cyod/4zi, i.e. the exclusion zone length is the same 
as obtained if z were a constant! 

The exclusion length 8o given by Equation A10 is 
a rigorous lower bound even for finite length frag- 
ments in the sense that the stress within 6o of a break 
will never reach the value of Oo. However, unlike the 
case shown in Fig. 2 where z is a constant, the stress 
beyond the exclusion zone is still below the applied 
value o(x), < r for x > 8o. Therefore the assump- 
tion in the theory that the stress is a constant at the 
asymptotic value Cro for x > 8o does not hold. The 
best approximation consistent with our theory is to 
model the stress recovery as shown in Fig. A2. 8o is 
given by Equation A10 but the stress beyond x > 8o is 
approximated by Cyo. This approximation over- 
estimates the stress near the end of the exclusion zone 
(within [5-1) and so overestimates the probability of 
failure in this region. The theory will thus predict 
slightly smaller fragment lengths. However, the mag- 
nitude of this error is fairly small: the maximum 
overestimate of the stress occurs for '~f = "(7 i at x = 80 
and is only 0.37 zf/0~. The length over  which some 
overestimates exist is on the order of [5-1. The effects 
of this approximate stress profile are thus not signi- 
ficant when (i) the elastic stress recovery is small, 
zf/~ ~ Cro, and (ii) the typical fragment lengths are 
much longer than 13-1. The latter: c0ndition also en- 
sures that the effects of overlap of stress recovery from 
the fibre ends, which lead to the hyperbolic rather 
than exponential behaviour in Equation A1, are also 
small. These conditions are usually satisfied in poly- 

mer and metal matrix materials. After using the pres- 
ent theory with the exclusion zone, Equation A10, 
these conditions can be checked experimentally to 
verify that application of the approximate exclusion 
zone is justified. 

To summarize this appendix, we find that if only 
elastic stresses exist (no debonding or yielding) an 
exclusion zone cannot be property defined. However, 
once debonding/yielding has occurred at ~f an approx- 
imate exclusion zone of length 6 = d o / 4 " c  i - 1/]]['cf/ 
�9 i - 1 + ln(~i/zf)], where zi is the shear stress behind 
the debond, can be defined and the stress profile in 
Fig. A2 is a good approximation if zt/~ ~ cy and if the 
fragment lengths are long compared to the elastic 
recovery length [3-1 

Appendix  2. Some formal  restrictions 
on 1:(x) 

In the text we considered a shear stress ~(x) which was 
independent of both oapp and the recovery length 8. If 
z(x) depends on 8 via the form r(x/8) then not all 
functional forms for such a ~(y) are consistent with the 
length 8 being a true exclusion zone. Here we delineate 
the allowable forms of r (y)  such that 8 is both the 
stress recovery length and the exclusion zone length. 
Recall that the exclusion zone at applied stress- Oo is 
that region near the break where the stress is forever- 
more reduced below Oo even as the applied stress is 
increased indefinitely. 

We suppose T(x) to be of the form z ( x / 8 )  where 8 is 
the stress recovery length, i.e. o(8) = ~Yapp. In this case, 
Equation 1 can be rewritten as 

48 I ~/a = z (y)dy  x _< 8 (All)  ~(x) d-  j o 

and 8 satisfies 

or  

cy(8) = z (y)dy  = Cy~pp (A12) 
0 

f 1 8 ~--- dCYapp' ~ = r ( y ) d y  (A13) 
47 ' o 

The recovery length 80 at applied stress Oo is also 
the exclusion zone length if o(x) < Cyo for all x < 8o 
for all applied future stresses O'ap p > (3" 0. Using Equa- 
tions Al l -A13  this requirement can be expressed 
mathematically as 

_1 I 
x~8 

O'(X) = O'app= z(y)dy  _< Oo 
L JO 

for x < 80; O'ap p ~ (~0 (A14) 

where 8 is the recovery length at stress O'ap p.  If Equa- 
tion A14 is satisfied for x = 8o then it is also satisfied 
for x < 8o. Equation A14 is then equivalent to 

1 16~ 
O'app~ z(y)dy ~ (3" 0 O'ap p _> cy o (A15) 

do 

but because 80/8 = (Yo/(Yapp,  Equation A15 can be 
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rewritten as 

1 fro~ .... z(y)dy - _< Oo/Oap p 0 _< Cyo/Cyapp_< 1 (A16) 

Because Equation A16 must hold for all o0/Cy.pp, we 
use x = Oo/Cy~pp and write Equation A16 as 

~ "c(y)dy _< x 0 _< x _< 1 (A17) 

This is the restriction on r (y)  if 8 is the proper exclu- 
sion zone length. This restriction can be converted 
directly to a restriction on the shape of the axial stress 
recovery by using Equation 1 of the text and Equation 
A13 

~(x) 
< x/8 for 0 < x < 8  (A18) 

O'ap p 

This shows that the stress-recovery function must be 
below the linear line o(x) -- ~app x/& 

An analysis similar in spirit to the present one can 
be used to determine the exact, or best approximate 
exclusion zone length for any z(x) function, an 
example of which is given in Appendix 1. Note also 
that the bilinear stress recovery form utilized in the 
text satisfies the requirement of Equation A18. 

Append ix  3. The un ique-s t rength  
f r a g m e n t  d is t r ibu t ion  
P(x; n, 8) 

The unique strength fragment distribution at density 
n and recovery length 8, P(x; n, 8), can be recast as the 
distribution of near-neighbour centre-to-centre dis- 
tances of N hard rods of length 8 thrown down ran- 
domly on a line of length L, but constrained not to 
overlap. Because the hard rods cannot penetrate, the 
minimum centre-to-centre separation is precisely 
8 and no rod can be inserted between two rods separ- 
ated by less than 28. The statistics and distribution 
functions for equisized hard rods placed at fixed posi- 
tions along a line has been solved elegantly by Widom, 
who called this process "sequential random addition" 
(s.r.a.) [4]. 

The desired distribution P(x; n, 8) is related to 
Widom's distribution of gaps q(x; nS) in the s.r.a. 
problem by 

1 
P(x; n, 8) - n82 q(x; nS). (A19) 

The distribution q, in turn, is given by 

2 ~ dq '* ( r l ' ) e  -(x/~- 1)O(q') q(x;q) 
3o 

- -  ' 2 ( 1 " 1 )  e -(~/8-2).1rl) 28 < x 

8_<x_<28 

(A20a) 

(A20b) 

The two functions required to solve the differential 
Equations 13 are particularly simple to relate to the 
f u n c t i o n ,  

q(& n 8) 
P(8; n, 8) - n82 

and 

- t]-8 d q ' ~  ( q ' )  (A22) 

L* 
N dx(x - 28) P(x; n, 8) 

6 

w 

L L 

1 

* ' ( n )  

= d~(rl) (A23) 

Inverting Equation A21 to obtain , ( q )  must be per- 
formed numerically but, with *(rl) in hand, all needed 
quantities associated with the sequential random 
addition problem, Equaions A19-A23, are easily 
obtained. 

The analytical structure of * (q)  is of interest to 
evaluate. Note that as n8 approaches the maximum 
limit of n8 = q*, the available space for adding new 
breaks, L*/L, goes to zero. Thus , ' ( q * ) =  oo and, 
from Equation A20b, * ( r l * ) =  oo, and so from 
Equation A21 

fo~ r" ] 1"1" ---- e -2 e-Sds dt = 0 .7476 . . .  
L do S 

(A24) 

reproducing the previously quoted mean fragment 
length if/8 = l /q*  = 1.337 . . . .  An asymptotic ana- 
lysis of Equation A21 shows that [12] 

e - 2 7  
*(n)  - n - ,  n* (A25) 1]* - q  

where 7 = 0.577216 is Euler's constant. This form is 
accurate to four decimal places for q > 0.70 and is 
particularly useful for calculating the high density 
portions to Equations A22 and A23. The (1"1" - rl) -1 
divergence is typical of one-dimensional problems. 
Widom has also performed a low-density expansion 
o f * ( q )  

*(P)  = q + q2 + ~rl 3 + 13rl , + . . .  (A26) 

and we have found that the approximate analytic form 

1 
* ( q )  - (1 - q / q ~ ) n *  (A27) 

is accurate to within 1% for * < 1 (r 1 < 0.47), al- 
though it does not exhibit the proper exponent of the 
q ~ q* divergence. In any case, Equation A21 is not 
difficult to solve numerically and one can then create 

* '(rl)  . . . . . .  look-up  tables for P(&n, 8) and L*/L, and P(x; n; 8) 
with q = n8 the dimensionless packing :density and ....... ~:fotlowsfrom),Equations:Al9~and..A20, 
with the auxiliary function * ( r l )  defined implicitly by 

fi' ( 2fol~e-s ) Appendix4. Additionalcalculation 
rl = e x p  - ds dt (A21) detai ls 

Using Equations A19 and A23, the set of differential 
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equations for N, L and P~ becomes simply 

dL L d5 
do  - ~ q(5; nS) - -  (A28a) 

dcy 

dN L d5 
d~ - 62 q(5; nS) d~ 

L 
+ (])(nS) t~176  ~ O(o'/(yo) p-1 (A28b) 

and the "removed" distribution evolves according to 

dPR(X; or) L d5 
dcr - ~5 q(8; nS) ~ 5o(x - 6) (A29) 

These equations may be solved directly by numer- 
ically iterating. Interestingly, however, once nearly all 
the breaks have been added to the fibre the solutions 
for rl = N S / L  only approach q* very slowly. As o, 
and hence 6, increases, a point is reached where 
dN/dcy becomes negative, i.e. more fragments are re- 
moved than breaks added, and the product N S / L  then 
increases more slowly toward rl* as more and more 
fragments are removed from the "remaining" fibre. In 
fact, all the fragments can be removed by this proced- 
ure but it is not physically satisfying to have N < 1 
and L < 1 but with NS/L  approaching q*. It is thus 
convenient and physical to halt the iterating proced- 
ure when the probability of adding one more break 
anywhere in the remaining fibre drops below 1/2. This 
cut-off corresponds closely to cessation of the experi- 
mental test: no more breaks (less than 1/2 of a break) 
occur for arbitrarily large stress increases and so the 
fragment distribution is unchanged. The cut-off condi- 
tion is thus 

f; N dx q(x; q) 1 (A30) 

because 1/rl q(x; q) is the fraction of fragments of size 
x. Utilizing Equation A20b for q(x) x > 28 yields the 
condition 

N** 1 
NO/n~ '  - - (A31) 

q 2 

Because the cutoff nearly always occurs at high pack- 
ing fractions q -~ rl* where the asymptotic form for 

is accurate, N~(p/r I - 1/2 is nearly identical 

N(r l ,  _ 1"1 ) = _1 (A32a) 
q 2 

o r  

TI ~g 

as the condition for determining the packing fraction 
q at which to halt the iteration process. 

(a) Linear stress recovery 
Here we further specialize to the situation where the 
shear stress is assumed constant, z(x) = z, so that the 
recovery length is linear with stress, 5 = do/4z. Before 

proceeding, it is useful to introduce length and stress 
scale parameters to non-dimensionalize the differen- 
tial equations and make evident the basic input para- 
meters. Let us rescale the stress by err (to be specified 
below) and then all lengths by the recovery length 
8R = dcyR/4z at the stress erR. Then rewriting Equa- 
tions A28a and b using the dimensionless variables 

s = O/erR (A33a) 

h = 5/5 R (a33b) 

L = L/SR; LT = LT/SR; Lo = LO/SR (A33c) 

(we leave it understood that all fibre lengths L are now 
in units of 5R) we obtain, noting that now also h = s 

dL L 
- q(5; q) (A34a) 

ds s 

and 

dN 
ds s 2 q(& q) + LO(q) osP- 1 (c~R/c~~176 

(a34b) 

One convenient choice for OR is then clearly that 
which reduces 1/Lo(CrR/%)O to unity. Because 
Lo = LO/SR = Lo/(dcrR/4~), this leads to 

err = Lo Cyo ~ (A35) 

which is related by a factor of 21/(p+1) to the scaling 
parameter selected by Henstenburg and Phoenix and 
used by us in the main text [3]. The set of equations in 
this reduced form depends only on the input para- 
meters, P, and the non-dimensional initial fibre length, 
LT = LT/5~. One must keep in mind, however, that 
the underlying scale parameters oR and 8R themselves 
depend on Cro, Lo, p and z, which are the quantities 
we ultimately wish to derive from experimental distri- 
butions. 
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